RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 115, Issue 3, Pages 385–391 (Mi mzm14042)

Approximation by Refinement Masks

E. A. Lebedeva

Saint Petersburg State University

Abstract: We construct a Parseval wavelet frame with a compact support for an arbitrary continuous $2\pi$-periodic function $f$$f(0)=1$, satisfying the inequality $|f(x)|^2+|f(x+\pi)|^2\leqslant 1$. The frame refinement mask uniformly approximates $f$. The refining function has stable integer shifts.

Keywords: refinement mask, unitary extension principle, Parseval wavelet frame, stability of integer shifts, filter bank, exact reconstruction.

UDC: 517

MSC: 42C40

Received: 24.05.2023
Revised: 29.09.2023

DOI: 10.4213/mzm14042


 English version:
Mathematical Notes, 2024, 115:3, 352–357

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025