RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 115, Issue 3, Pages 317–329 (Mi mzm14048)

This article is cited in 2 papers

On the Generation of the Groups $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ and $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$ by Three Involutions Two of Which Commute. II

M. A. Vsemirnova, R. I. Gvozdevb, Ya. N. Nuzhinb, T. B. Shaipovac

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Siberian Federal University, Krasnoyarsk
c Krasnoyarsk Scientific Center of SB RAS

Abstract: We complete the solution of the problem on the existence of generating triplets of involutions two of which commute for the special linear group $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ and the projective special linear group $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$ over the ring of Gaussian integers. The answer has only been unknown for $\mathrm{SL}_5$, $\mathrm{PSL}_6$, and $\mathrm{SL}_{10}$. We explicitly indicate the generating triples of involutions in these three cases, and we make a significant use of computer calculations in the proof. Taking into account the known results for the problem under consideration, as a consequence, we obtain the following two statements. The group $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ ($\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$, respectively) is generated by three involutions two of which commute if and only if $n\geqslant 5$ and $n\neq 6$ (if $n\geqslant 5$, respectively).

Keywords: special and projective special linear groups, ring of Gaussian integers, generating triplet of involutions.

UDC: 511

MSC: 20G30

Received: 29.05.2023
Revised: 31.08.2023

DOI: 10.4213/mzm14048


 English version:
Mathematical Notes, 2024, 115:3, 289–300

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025