RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 116, Issue 5, Pages 1064–1071 (Mi mzm14062)

Papers published in the English version of the journal

Functional Ghobber–Jaming uncertainty principle

K. Mahesh Krishna

School of Mathematics and Natural Sciences, Chanakya University Global Campus, Bangalore Rural, Karnataka, India

Abstract: Let $\bigl(\{f_j\}_{j=1}^n, \{\tau_j\}_{j=1}^n\bigr)$ and $\bigl(\{g_k\}_{k=1}^n, \{\omega_k\}_{k=1}^n\bigr)$ be two $p$-orthonormal bases for a finite-dimensional Banach space $\mathcal{X}$. Let $M,N\subseteq \{1, \ldots, n\}$ be such that
$$ o(M)^{\tfrac{1}{q}}o(N)^{\tfrac{1}{p}}< \frac{1}{\displaystyle \max_{1\leq j,k\leq n}|g_k(\tau_j) |}, $$
where $q$ is the conjugate index of $p$ and $o(M)$ is the cardinality of $M$. Then for all $x \in \mathcal{X}$, we show that
\begin{equation} \tag{1} \|x\|\leq \Biggl(1+\frac{1}{1-o(M)^{\tfrac{1}{q}}o(N)^{\tfrac{1}{p}} \displaystyle\max_{1\leq j,k\leq n}|g_k(\tau_j)|}\Biggr)\left[\Biggl(\sum_{j\in M^c}|f_j(x)|^p\Biggr)^{\tfrac{1}{p}}+\Biggl(\sum_{k\in N^c}|g_k(x) |^p\Biggr)^{\tfrac{1}{p}}\right]. \end{equation}
We refer to inequality (1) as the Functional Ghobber–Jaming Uncertainty Principle. Inequality (1) improves the uncertainty principle obtained by Ghobber and Jaming [Linear Algebra Appl., 2011].

Keywords: uncertainty principle, orthonormal basis, Hilbert space, Banach space.

MSC: 42C15, 46B03, 46B04

Received: 05.06.2023
Revised: 01.10.2024

Language: English


 English version:
Mathematical Notes, 2024, 116:5, 1064–1071

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025