RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 115, Issue 4, Pages 521–532 (Mi mzm14142)

On the Convergence Rate in a Local Renewal Theorem for a Random Markov Walk

G. A. Bakaia

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: Suppose that a sequence $\{X_n\}_{n\ge 0}$ of random variables is a homogeneous indecomposable Markov chain with finite set of states. Let $\xi_n$, $n\in\mathbb{N}$, be random variables defined on the chain transitions.
The reconstruction function
$$ u_k:=\sum_{n=0}^{+\infty} \mathsf P(S_n=k), \qquad k\in\mathbb{N}, $$
where $S_0:=0$ and $S_n:=\xi_1+\dots + \xi_n$, $n\in\mathbb{N}$, is introduced. It is shown that this function converges to its limit with exponential rate, and an explicit description of the exponent is given.

Keywords: local reconstruction theorem, Markov chain.

UDC: 519.217.2

Received: 18.04.2023
Revised: 29.09.2023

DOI: 10.4213/mzm14142


 English version:
Mathematical Notes, 2024, 115:4, 479–488

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025