RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 116, Issue 1, Pages 122–138 (Mi mzm14181)

Approximation of Riemann–Liouville type integrals on an interval by methods based on Fourier–Chebyshev sums

P. G. Potseiko, Y. A. Rovba

Yanka Kupala State University of Grodno

Abstract: We study approximations of Riemann–Liouville type integrals on the interval $[-1,1]$. The approximation method involves an operator constructed by replacing the density of the integral with partial sums of Fourier–Chebyshev series. Integral representations and estimates of these approximations are established for the cases in which the density belongs to some classes of continuous functions. The estimates substantially depend on the position of the point on the interval.

Keywords: Riemann–Liouville integral, Fourier–Chebyshev sum, uniform approximation, asymptotic estimate, Laplace method, functions with power-type singularities.

UDC: 517.5

MSC: 41A10, 41A25

Received: 26.10.2023
Revised: 07.02.2024

DOI: 10.4213/mzm14181


 English version:
Mathematical Notes, 2024, 116:1, 104–118


© Steklov Math. Inst. of RAS, 2024