RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 116, Issue 2, Pages 261–265 (Mi mzm14182)

Theorems on the representability of spaces as unions of at most countably many homogeneous subspaces

S. M. Komov

Moscow State Pedagogical University

Abstract: A topological space $X$ is said to be homogeneous if for any $x, y\in X$ there exists a self-homeomorphism $f$ of $X$ such that $f(x)=y$.
We propose a method for constructing topological spaces representable as a union of $n$ but not fewer homogeneous subspaces, where $n$ is an arbitrary given positive integer. Further, we present a solution of a similar problem for the case of infinitely many summands.

Keywords: homogeneous topological space, topological sum of spaces, small inductive dimension.

UDC: 515.122.5

Received: 28.10.2023
Revised: 20.03.2024

DOI: 10.4213/mzm14182


 English version:
Mathematical Notes, 2024, 116:2, 279–282

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025