RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 116, Issue 3, Pages 372–387 (Mi mzm14189)

Symmetric hyperbolic trap

S. D. Glyzin, A. Yu. Kolesov

Centre of Integrable Systems, P.G. Demidov Yaroslavl State University

Abstract: An arbitrary $C^1$ diffeomorphism $f$ from an open subset $U$ of a Riemannian $m$-manifold $M$, $m\geqslant 2$, to a set $f(U)\subset M$ is considered. Sufficient conditions for the domain $U$ to be a hyperbolic trap are proposed. This means that any set $A\subset U$ satisfying the condition $f(A)=A$ is automatically a hyperbolic set of the diffeomorphism $f$. Moreover, this hyperbolic trap is symmetric in the sense that the conditions for its existence do not change under the passage from $f$ to the inverse map $f^{-1}$.

Keywords: diffeomorphism, manifold, invariant set, hyperbolic trap.

UDC: 517.926

MSC: 37C05, 37D20, 37C55, 37F15

Received: 15.11.2023

DOI: 10.4213/mzm14189


 English version:
Mathematical Notes, 2024, 116:3, 446–457

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025