RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 115, Issue 6, Pages 919–934 (Mi mzm14191)

Yu. N. Subbotin's Method in the Problem of Extremal Interpolation in the Mean in the Space $L_p(\mathbb R)$ with Overlapping Averaging Intervals

V. T. Shevaldin

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: On a uniform grid on the real axis, we study the Yanenko–Stechkin–Subbotin problem of extremal function interpolation in the mean in the space $L_p(\mathbb R)$, $1<p<\infty$, of two-way real sequences with the least value of the norm of a linear formally self-adjoint differential operator ${\mathcal L}_n$ of order $n$ with constant real coefficients. In case of even $n$, the value of the least norm in the space $L_p(\mathbb R)$, $1<p<\infty$, of the extremal interpolant is calculated exactly if the grid step $h$ and the averaging step $h_1$ are related by the inequality $h<h_1\leqslant 2h$.

Keywords: extremal interpolation, spline, uniform mesh, formally self-adjoint differential operator, minimal norm.

UDC: 519.65

Received: 17.11.2023
Revised: 11.01.2024

DOI: 10.4213/mzm14191


 English version:
Mathematical Notes, 2024, 115:6, 1017–1029

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024