RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 115, Issue 3, Pages 336–340 (Mi mzm14197)

Papers published in the English version of the journal

Trigonometric Polynomials with Frequencies in the Set of Cubes

M. R. Gabdullina, S. V. Konyaginb

a Department of Mathematics, University of Illinois at Urbana-Champaign, USA
b Lomonosov Moscow State University

Abstract: We prove that for any $\varepsilon>0$ and any trigonometric polynomial $f$ with frequencies in the set $\{n^3\colon N \leqslant n\leqslant N+N^{2/3-\varepsilon}\}$, one has
\begin{equation*} \|f\|_4 \ll \varepsilon^{-1/4}\|f\|_2 \end{equation*}
with implied constant being absolute. We also show that the set $\{n^3\colon N\leqslant n\leqslant N+(0.5N)^{1/2}\}$ is a Sidon set.

Keywords: cube, trigonometric polynomial, divisor.

MSC: 42A05, 11A05

Received: 25.11.2023
Revised: 03.03.2024

Language: English


 English version:
Mathematical Notes, 2024, 115:3, 336–340

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025