RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 116, Issue 4, Pages 504–509 (Mi mzm14205)

Approximate search for the $k$th order distance in a system of unit square points

K. Kaymakovab, D. S. Malyshevcd

a National Research University Higher School of Economics, Moscow
b Coleman Group, Moscow
c National Research University "Higher School of Economics", Nizhny Novgorod Branch
d Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region

Abstract: For a given tuple $P=(p_1,\dots,p_n)$ (a set of points of the unit square) and a number $1\leqslant k\leqslant \binom{n}{2}$, this paper considers the problem of finding the $k$th ordinal distance between elements of $P$ in the $\ell_s$-norm, where $s\in\{1,\infty\}$. In other words, we consider the problem of finding a minimal $d_k$ such that $\sum_{i<j}\mathbb I(\|p_i,p_j\|_s\leqslant d_k)\geqslant k$, where $\mathbb I$ is the indicator function and $s\in\{1,\infty\}$. In this paper, for any $\epsilon>0$, we propose an $\epsilon$-approximation algorithm with complexity $O(n\log n\log(1/\epsilon))$ for computing $d_k$.

Keywords: computational geometry, search for ordinal distances, efficient algorithm.

UDC: 519.163

MSC: 68U05

Received: 27.11.2023

DOI: 10.4213/mzm14205


 English version:
Mathematical Notes, 2024, 116:4, 646–650


© Steklov Math. Inst. of RAS, 2024