RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 116, Issue 5, Pages 647–666 (Mi mzm14240)

Limit theorem on convergence to the local time of a Brownian bridge

V. I. Afanasyev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: An integer random walk $\{S_{i},\,i\geqslant 0\}$ with zero drift and finite variance $\sigma^{2}$ is considered. For a random process that assigns, to a variable $u\in \mathbb{R}$, the number of hits of the specified walk into the state $\lfloor u\sigma\sqrt n\rfloor $ up to time $n$ and is considered under the condition that $S_{n}=0$, a functional limit theorem concerning convergence of the process to the local time of the Brownian bridge is proved.

Keywords: random walks, conditional Brownian motions, local time of conditional Brownian motions, functional limit theorems.

UDC: 519.214

MSC: 60G50, 60J55, 60J65

Received: 01.02.2024
Revised: 21.07.2024

DOI: 10.4213/mzm14240


 English version:
Mathematical Notes, 2024, 116:5, 875–891

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025