Abstract:
Let $M$ be a $W^{\ast}$-algebra acting on a separable complex Hilbert space $H$. We show that the inclusion of $M$ into $\mathscr{B}(H)$ factors through an $\mathfrak{L}_{\infty}$-space only if $M$ is a finite type $\mathrm{I}$ algebra.
Keywords:Dunford–Pettis property, von Neumann algebra.