RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 114, Issue 6, Pages 1163–1168 (Mi mzm14274)

The $g$-Drazin Invertibility of a Block Operator Matrix

Huanyin Chena, Marjan Sheibanib

a School of Big Data, Fuzhou University of International Studies and Trade, Fuzhou, 350202, China
b Farzanegan Campus, Semnan University, Semnan, 55798-35146, Iran

Abstract: We present new additive properties of the $g$-Drazin inverse of a linear operator on a Banach space. The $g$-Drazin invertibility of certain $2\times 2$ block operator matrices on a Banach space is thereby established. These results extend many known results, e.g., by Yang and Liu [J. Comput. Applied Math. 235, 1412–1417 (2011)] and Dopazo and Martinez-Serrano [Linear Algebra Appl. 432, 1896–1904 (2010)].

Keywords: $g$-Drazin inverse, Cline's formula, spectral idempotent, block operator matrix, Banach space.

Received: 23.05.2022
Revised: 16.10.2023

Language: English


 English version:
Mathematical Notes, 2023, 114:6, 1163–1168

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024