RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 114, Issue 6, Pages 1225–1232 (Mi mzm14279)

On Uniqueness Properties of Rademacher Chaos Series

G. A. Karagulyana, V. G. Karagulyanb

a Institute of Mathematics of National Academy of Sciences of Armenia, Yerevan, 0019, Armenia
b Faculty of Mathematics and Mechanics, Yerevan State University, Yerevan, 0025, Armenia

Abstract: For a given integer $l\ge 1$, let $\{m_k\}$ be an arbitrary numeration of the integers permitting a dyadic decomposition $2^{k_1}+2^{k_2}+\ldots+2^{k_s}$ with $s\le l$. We prove that (i) the convergence of a Walsh series $\sum_ka_kw_{m_k}(x)$ on a set of measure $>1-2^{-4l}$ implies $\sum_ka_k^2<\infty$ and (ii) if it converges to zero on a set of the same measure $>1-2^{-4l}$, then $a_k=0$ for all $k\ge 1$.

Keywords: uniqueness of Walsh series, Rademacher chaos, lacunary series.

Received: 13.07.2023
Revised: 13.07.2023

Language: English


 English version:
Mathematical Notes, 2023, 114:6, 1225–1232

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024