RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2023 Volume 114, Issue 6, Pages 1350–1357 (Mi mzm14290)

Pointwise Semicommutative Rings

Sanjiv Subbaa, Tikaram Subedia, A. M. Buhphangb

a Department of Mathematics, National Institute of Technology Meghalaya, Shillong, 793003, India
b Department of Mathematics, North-Eastern Hill University, Shillong, 793022, India

Abstract: We call a ring $R$ pointwise semicommutative if for any element $a\in R$ either $l(a)$ or $r(a)$ is an ideal of $R$. The class of pointwise semicommutative rings is a strict generalization of semicommutative rings. Since reduced rings are pointwise semicommutative, this paper studies sufficient conditions for pointwise semicommutative rings to be reduced. For a pointwise semicommutative ring $R$, $R$ is strongly regular if and only if $R$ is left SF; $R$ is exchange if and only if $R$ is clean; if $R$ is semiperiodic then $R/J(R)$ is commutative.

Keywords: pointwise semicommutative ring, semicommutative ring.

Received: 26.12.2022
Revised: 24.01.2023

Language: English


 English version:
Mathematical Notes, 2023, 114:6, 1350–1357

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024