RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 116, Issue 5, Pages 684–693 (Mi mzm14312)

Finite groups with generalized subnormal $\mathfrak{F}$-critical subgroups

S. Wangab, A. -M. Liua, V. G. Safonovcd, A. N. Skibae

a School of Science, Hainan University, China
b School of Mathematics, Tianjin University
c Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk
d Belarusian State University, Minsk
e Gomel State University named after Francisk Skorina

Abstract: Let $G$ be a finite group and let $A$ be a subgroup of $G$. Let $A_{\operatorname{sn}G}$ be the subgroup of $A$ generated by all subnormal subgroups of $G$ contained in $A$, and let $A^{\operatorname{sn}G}$ be the intersection of all subnormal subgroups of $G$ containing $A$. Let $N\leqslant G$. Then we say that $A$ is $N$-subnormal in $G$ if $N$ avoids every composition factor $H/K$ of $G$ between $A_{\operatorname{sn}G}$ and $A^{\operatorname{sn}G}$, i.e., $N\cap H= N\cap K$. In this paper, we give applications of $N$-subnormality to the theory of groups with given $\mathfrak{F}$-critical subgroups. In particular, using this notion, we give new characterizations of finite solvable groups, metanilpotent groups, and groups with nilpotent derived subgroup $G'$.

Keywords: finite group, solvable group, $\mathfrak{F}$-critical group, $N$-subnormal subgroup.

UDC: 512.542

MSC: 20D10, 20D15

Received: 14.03.2024
Revised: 15.06.2024

DOI: 10.4213/mzm14312


 English version:
Mathematical Notes, 2024, 116:5, 934–941


© Steklov Math. Inst. of RAS, 2025