RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2025 Volume 117, Issue 2, Pages 181–195 (Mi mzm14316)

Multipliers for the Calderón–Lozanovskii construction

E. I. Berezhnoiabc

a P.G. Demidov Yaroslavl State University
b Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan, Almaty
c Regional mathematical center of Southern Federal University, Rostov-on-Don

Abstract: Using a new approach for the Calderón–Lozanovskii construction $\varphi (X, L^{\infty})$ involving an arbitrary ideal space $X$, a Lebesgue space $L^{\infty}$, and a concave function $\varphi$, an exact description of the multiplier space $M(\varphi_0 (X, L^{\infty}) \to \varphi_1 (X, L^{\infty}))$ is given, provided that the ratio ${{\varphi_0(\cdot, 1)} /{\varphi_1(\cdot, 1)}}$ does not increase. Namely, it is shown that the equality
$$ M(\varphi_0 (X, L^{\infty}) \to \varphi_1 (X, L^{\infty}))=\varphi_2 (X, L^{\infty}) $$
is satisfied, where the function $\varphi_2 $ is determined constructively from the functions $\varphi_0, \varphi_1$. The absence of restrictions on the ideal space $X$ and the exact description of the function $\varphi_2 $ enables us to apply the results thus obtained to a wide class of ideal spaces that are not symmetric and cannot be reduced to symmetric ones by an introduction of weight functions, for example, Morrey spaces.

Keywords: ideal Banach space, multiplier, Calderón–Lozanovskii construction.

UDC: 517.5

PACS: 46E30, 46B42,42B0

Received: 19.03.2024
Revised: 16.05.2024

DOI: 10.4213/mzm14316


 English version:
Mathematical Notes, 2025, 117:2, 195–207

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025