RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 116, Issue 2, Pages 350–355 (Mi mzm14317)

Papers published in the English version of the journal

Boundedness of solutions of the Ginzburg–Landau system involving a subelliptic operator

Y. T. N. Haa, A. T. Duonga, N. Bietb

a School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, Vietnam
b Department of Education and Training of Phu Tho Province, Viet Tri, Phu Tho, Vietnam

Abstract: The aim of this paper is to study the boundedness of solutions of the Ginzburg–Landau system
\begin{equation*} \begin{cases} \partial_t u -\Delta_\lambda u = u - u^3 - \gamma uv^2 & \text{in } \mathbb{R}\times \mathbb{R}^N, \\ \partial_t v -\Delta_\lambda v = v - v^3 - \gamma u^2v & \text{in }\mathbb{R}\times \mathbb{R}^N, \end{cases} \end{equation*}
where $\gamma>0$ and $\Delta_{\lambda}$ is the subelliptic operator
\begin{equation*} \sum_{i=1}^N \partial_{x_i}(\lambda_i^2\partial_{x_i}). \end{equation*}
In the stationary case, where the solutions are independent of the time variable, our result can be seen as an extension of some results in [A. Farina, B. Sciunzi, and N. Soave, Commun. Contemp. Math. 22 (5), Article no. 1950044 (2020)] from the Laplace operator to the subelliptic operator $\Delta_{\lambda}$.

Keywords: Qualitative property, Ginzburg–Landau system, parabolic system, elliptic system, boundedness of solutions, subelliptic operator.

MSC: 35K40, 35B53, 35J60

Received: 21.03.2024
Revised: 21.03.2024

Language: English


 English version:
Mathematical Notes, 2024, 116:2, 350–355


© Steklov Math. Inst. of RAS, 2024