RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 116, Issue 3, Pages 438–444 (Mi mzm14318)

This article is cited in 1 paper

Generic correlations and ergodic averages for strongly and mildly mixing automorphisms

V. V. Ryzhikov

Lomonosov Moscow State University

Abstract: Given a sequence $\psi(n)\to +0$ and a square integrable nonzero function $f$, the set $\{n:|(T^nf,f)|>\psi(n)\}$ is infinite for any generic mixing automorphism $T$. For mildly mixing automorphisms $T$, the nonzero averages $1/{k_n}\sum_{i=1}^{k_n}T^if (x)$ do not converge at a rate of $o(1/{k_n})$.

Keywords: decay of correlations, ergodic average, generic mixing automorphism, partial mixing, mild mixing, partial rigidity.

UDC: 517.987

PACS: 517.9

MSC: 517.9

Received: 23.03.2024
Revised: 07.04.2024

DOI: 10.4213/mzm14318


 English version:
Mathematical Notes, 2024, 116:3, 521–526


© Steklov Math. Inst. of RAS, 2024