RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 115, Issue 4, Pages 561–568 (Mi mzm14331)

Papers published in the English version of the journal

On the Existence of Equivariant Kähler Models of Certain Compact Complex Spaces

Jin Hong Kim

Department of Mathematics Education, Chosun University, Gwangju, Republic of Korea

Abstract: Let $X$ be a compact complex space in Fujiki's class $\mathcal{C}$. In this paper, we show that $X$ admits a compact Kähler model ${\tilde X}$, that is, there exists a projective bimeromorphic map $\sigma\colon\tilde{X}\to X$ from a compact Kähler manifold $\tilde{X}$ such that the automorphism group $\operatorname{Aut}(X)$ lifts holomorphically and uniquely to a subgroup of $\operatorname{Aut}({\tilde X})$. As a consequence, we also give a few applications to the Jordan property, the finiteness of torsion groups, and arbitrary large finite abelian subgroups for compact complex spaces in Fujiki's class ${\mathcal C}$.

Keywords: automorphism group, compact complex space in Fujiki's class ${\mathcal C}$, Jordan constant, Jordan property, strongly Jordan property, equivariant Kähler model.

Received: 27.07.2023
Revised: 30.01.2024

Language: English


 English version:
Mathematical Notes, 2024, 115:4, 561–568

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025