RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 116, Issue 2, Pages 245–260 (Mi mzm14358)

Generalized one-dimensional Dunkl transform in direct problems of approximation theory

V. I. Ivanovabc

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics
c Tula State University

Abstract: On the real line, we study the generalized Dunkl harmonic analysis depending on a parameter $r\in\mathbb{N}$. The case of $r=0$ corresponds to the usual Dunkl harmonic analysis. All constructions depend on the parameter $r\geqslant 1$. The differences and the moduli of smoothness are defined using a generalized translation operator. The Sobolev space and the $K$-functional are defined using a differential-difference operator. An approximate Jackson-type inequality is proved. The equivalence of the $K$-functional and the modulus of smoothness is established.

Keywords: generalized Dunkl transform, generalized translation operator, convolution, $K$-functional, modulus of smoothness, Jackson inequality.

UDC: 517.5

MSC: 42A38

Received: 06.05.2024

DOI: 10.4213/mzm14358


 English version:
Mathematical Notes, 2024, 116:2, 265–278

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025