RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 116, Issue 5, Pages 759–765 (Mi mzm14388)

On global solutions of second-order quasilinear elliptic inequalities

A. A. Kon'kova, A. E. Shishkovb

a Lomonosov Moscow State University
b Peoples' Friendship University of Russia named after Patrice Lumumba, Moscow

Abstract: Differential inequalities of the form
$$ - \operatorname{div} A (x, \nabla u)\geqslant f(u)\quad \text{in}\quad {\mathbb R}^n $$
are considered, where $n \geqslant 2$ and $A$ is a Carathéodory function that satisfies the uniform ellipticity conditions
$$ C_1|\xi|^p\leqslant\xi A (x, \xi), \qquad |A (x, \xi)| \leqslant C_2 |\xi|^{p-1}, \qquad C_1, C_2 > 0, \qquad p > 1, $$
for almost every $x \in {\mathbb R}^n$ and all $\xi \in {\mathbb R}^n$. For nonnegative solutions of these inequalities, precise conditions for the absence of nontrivial solutions are obtained.

Keywords: absence of solutions, nonlinear differential inequality.

UDC: 517.954

MSC: 35B44, 35B08, 35J30, 35J70

Received: 29.05.2024
Revised: 19.06.2024

DOI: 10.4213/mzm14388


 English version:
Mathematical Notes, 2024, 116:5, 1014–1019


© Steklov Math. Inst. of RAS, 2025