RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 116, Issue 2, Pages 266–289 (Mi mzm14398)

This article is cited in 2 papers

Asymptotic representations of solutions of $n\times n$ systems of ordinary differential equations with a large parameter

A. P. Kosarevab, A. A. Shkalikovab

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics

Abstract: The paper considers $n \times n$ systems of ordinary differential equations of the form
$$ y'-By-C(\cdot, \lambda)y=\lambda Ay, \qquad y=y(x), \quad x \in [0, 1], $$
where $A=\operatorname{diag}\{a_1(x), \dots, a_n(x)\}$, $B=\{b_{jk}(x)\}_{j, k=1}^n$, and $C= \{c_{jk}(x, \lambda)\}_{j, k=1}^n$. All functions in these matrices are complex-valued and integrable over $x \in [0, 1]$, and $\|c_{jk}(\cdot, \lambda)\|_{L_1} \to 0$ as $\lambda \to \infty$. The theorems proved in the paper generalize the results of the classical Birkhoff–Tamarkin–Langer theory concerning asymptotic representations of fundamental solutions in sectors and half-strips of the complex plane as $\lambda \to \infty$. The focus is on the minimality of the smoothness requirements on the coefficients.

Keywords: asymptotics of solutions of ordinary differential equations and systems, spectral asymptotics, Birkhoff asymptotics.

UDC: 517

Received: 16.05.2024

DOI: 10.4213/mzm14398


 English version:
Mathematical Notes, 2024, 116:2, 283–302

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025