RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2025 Volume 118, Issue 2, Pages 177–190 (Mi mzm14488)

Subgroup Embeddings in a Finite Group: between Subnormality and $\mathrm{K}$-$\mathbb{P}$-Subnormality

A. F. Vasil'eva, T. I. Vasilyevab

a Gomel State University named after Francisk Skorina
b Belarusian State University of Transport, Gomel'

Abstract: Let $t$ be a chosen positive integer. A subgroup $H$ of a finite group $G$ is said to be $\mathrm{K}$-$\mathbb{P}_{t}$-subnormal in $G$ if there exists a chain of subgroups
$$ H=H_{ 0} \leq H_{1} \leq \cdots \leq H_{m-1} \leq H_{m}=G $$
such that either $H_{i-1}$ is normal in $H_{i}$ or $|H_{i} : H_{i-1}|$ is some prime $p$ and $p-1$ is not divisible by $(t+1)$st powers of primes for any $i=1,\dots, m$. In this paper, properties of $\mathrm{K}$-$\mathbb{P}_{t}$-subnormal subgroups are obtained. It is proved that all (supersolvable) groups with $\mathrm{K}$-$\mathbb{P}_{t}$-subnormal Sylow subgroups form a hereditary saturated formation, and its local definition is found.

Keywords: {finite group, supersolvable group, Sylow subgroup, $\mathrm{K}$-$\mathbb{P}$-subnormal subgroup, $\mathrm{K}$-$\mathbb{P}_{t}$-subnormal subgroup, formation.}

UDC: 512.542

MSC: 20D10, 20E15, 20F16

Received: 01.05.2024
Revised: 04.02.2025

DOI: 10.4213/mzm14488


 English version:
Mathematical Notes, 2025, 118:2, 177–190


© Steklov Math. Inst. of RAS, 2026