RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 116, Issue 5, Pages 1051–1063 (Mi mzm14516)

Papers published in the English version of the journal

Nontrivial solutions of the Dirichlet problems for semilinear degenerate elliptic equations

D. T. Luyena, N. M. Trib, D. A. Tuanc

a Department of Mathematics, Hoa Lu University, Ninh Binh, Vietnam
b Institute of Mathematics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
c University of Sciences, Vietnam National University, Hanoi, Vietnam

Abstract: In this article, we study the existence of nontrivial weak solutions of the boundary value problem
$$ -\frac{\partial^2 u}{\partial x^2} -|x|^{2k}\frac{\partial^2 u}{\partial y^2}=f(x,y,u)\text{ in }\Omega, \quad u=0 \text{ on }\partial\Omega, $$
where $\Omega$ is a bounded domain with smooth boundary in $\mathbb{R}^2$, $\Omega \cap \{x=0\}\ne \varnothing$, $k >0$, $f(x,y,0)=0$.

Keywords: boundary value problems, critical growth, critical values, nontrivial solutions, embedding theorems, Pohozaev's type identities.

MSC: Primary 35J70; Secondary 35J40

Received: 18.09.2024
Revised: 17.10.2024

Language: English


 English version:
Mathematical Notes, 2024, 116:5, 1051–1063

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025