RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2024 Volume 116, Issue 6, Pages 1218–1232 (Mi mzm14557)

Papers published in the English version of the journal

Notes on $2D$ $\mathbb{F}_p$-Selberg integrals

Alexander Varchenko

Department of Mathematics, University of North Carolina at Chapel Hill, The United States of America

Abstract: We prove a two-dimensional $\mathbb{F}_p$-Selberg integral formula, in which the two-dimensional $\mathbb{F}_p$-Selberg integral $\overline S(a,b,c;l_1,l_2)$ depends on positive integer parameters $a,b,c$, $l_1,l_2$ and is an element of the finite field $\mathbb{F}_p$ with an odd prime number $p$ of elements. The formula is motivated by the analogy between multidimensional hypergeometric solutions of the KZ equations and polynomial solutions of the same equations reduced modulo $p$.

Keywords: $\mathbb{ F}_p$-integral, $\mathbb{F}_p$-Selberg integral.

MSC: 11C08, 33E50

Received: 01.11.2024
Revised: 01.11.2024

Language: English


 English version:
Mathematical Notes, 2024, 116:6, 1218–1232

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025