RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1998 Volume 64, Issue 6, Pages 830–838 (Mi mzm1462)

This article is cited in 19 papers

On a family of extremum problems and the properties of an integral

A. P. Buslaeva, V. A. Kondrat'evb, A. I. Nazarovc

a Moscow State Automobile and Road Technical University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
c Saint-Petersburg State University

Abstract: The following extremum problem is studied:
$$ \int _0^1\bigl(y''(t)\bigr)^p\,dt\bigg/ \int _0^1\bigl(y'(t)\bigr)^q\,dt \to\min $$
over all $y$, with $y(0)=y(1)=0$ and $y'(0)=y'(1)=0$, which leads to the integral
$$ \int_{\mathbb R}\bigl(\max(0,1+\mu x-|x|^q)\bigr)^{1/p'}\,dx $$
and yields exact estimates for the eigenvalues of differential operators in the generalized Lagrange problem on the stability of a column.

UDC: 517.972.8

Received: 19.12.1997

DOI: 10.4213/mzm1462


 English version:
Mathematical Notes, 1998, 64:6, 719–725

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025