Abstract:
We show that
$d_n(W^1_1,L_q)\asymp n^{-1/2}\log n$
for
$2<q<\infty$.
This completes the solution of the problem on orders of decay
of the Kolmogorov widths in the classical case of Sobolev classes of
integer smoothness on an interval.
Keywords:Kolmogorov width, Sobolev class, function of bounded variation.