RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2025 Volume 117, Issue 6, Pages 922–927 (Mi mzm14666)

Kolmogorov widths of the class $W_1^1$

Yu. V. Malykhin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: We show that $d_n(W^1_1,L_q)\asymp n^{-1/2}\log n$ for $2<q<\infty$. This completes the solution of the problem on orders of decay of the Kolmogorov widths in the classical case of Sobolev classes of integer smoothness on an interval.

Keywords: Kolmogorov width, Sobolev class, function of bounded variation.

UDC: 517.5

MSC: 41A46

Received: 04.03.2025

DOI: 10.4213/mzm14666


 English version:
Mathematical Notes, 2025, 117:6, 1034–1039

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025