RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1997 Volume 61, Issue 1, Pages 34–44 (Mi mzm1480)

Conservation and bifurcation of an invariant torus of a vector field

Yu. N. Bibikov

Saint-Petersburg State University

Abstract: We consider small perturbations with respect to a small parameter $\varepsilon\ge0$ of a smooth vector field in $\mathbb R^{n+m}$ possessing an invariant torus $T_m$. The flow on the torus $T_m$ is assumed to be quasiperiodic with $m$ basic frequencies satisfying certain conditions of Diophantine type; the matrix $\Omega$ of the variational equation with respect to the invariant torus is assumed to be constant. We investigate the existence problem for invariant tori of different dimensions for the case in which $\Omega$ is a nonsingular matrix that can have purely imaginary eigenvalues.

UDC: 517

Received: 10.02.1995

DOI: 10.4213/mzm1480


 English version:
Mathematical Notes, 1997, 61:1, 29–37

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025