RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1997 Volume 61, Issue 5, Pages 728–733 (Mi mzm1554)

The sum of coefficients of bounded univalent functions

D. V. Prokhorov

Saratov State University named after N. G. Chernyshevsky

Abstract: We solve the maximal value problem for the functional $\operatorname{Re}\sum_{j=1}^ma_{k_j}$ in the class of functions $f(z)=z+a_2z^2+\dotsb$ that are holomorphic and univalent in the unit disk and satisfy the inequality $|f(z)|<M$. We prove that the Pick functions are extremal for this problem for sufficiently large $M$ whenever the set of indices $k_1,\dots,k_m$ contains an even number.

UDC: 517.54

Received: 13.12.1995

DOI: 10.4213/mzm1554


 English version:
Mathematical Notes, 1997, 61:5, 609–613

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024