RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2004 Volume 76, Issue 6, Pages 883–892 (Mi mzm160)

This article is cited in 6 papers

On the Zeros of Laplace Transforms

A. M. Sedletskii

M. V. Lomonosov Moscow State University

Abstract: Suppose that $f$ is a positive, nondecreasing, and integrable function in the interval $(0,1)$. Then, by Pólya's theorem, all the zeros of the Laplace transform
$$ F(z)=\int_0^1e^{zt}f(t)\,dt $$
lie in the left-hand half-plane $\operatorname{Re} z\le0$. In this paper, we assume that the additional condition of logarithmic convexity of $f$ in a left-hand neighborhood of the point $1$ is satisfied. We obtain the form of the left curvilinear half-plane and also, under the condition $f(+0)>0$, the form of the curvilinear strip containing all the zeros of $F(z)$.

UDC: 517.5

Received: 21.10.2003

DOI: 10.4213/mzm160


 English version:
Mathematical Notes, 2004, 76:6, 824–833

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024