RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1997 Volume 62, Issue 3, Pages 451–467 (Mi mzm1627)

This article is cited in 12 papers

Del Pezzo surfaces with nonrational singularities

I. A. Cheltsov

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: Normal algebraic surfaces $X$ with the property $\operatorname{rk}(\operatorname{Div}(X)\otimes\mathbb Q/{\equiv})=1$, numerically ample canonical classes, and nonrational singularities are classified. It is proved, in particular, that any such surface $X$ is a contraction of an exceptional section of a (possibly singular) relatively minimal ruled surface $\widetilde X$ with a nonrational base. Moreover, $\widetilde X$ is uniquely determined by the surface $X$.

UDC: 512.774.42

Received: 02.02.1996

DOI: 10.4213/mzm1627


 English version:
Mathematical Notes, 1997, 62:3, 377–389

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024