RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1997 Volume 62, Issue 4, Pages 603–616 (Mi mzm1642)

This article is cited in 6 papers

Asymptotics and weighted estimates of Meixner polynomials orthogonal on the grid $\{0,\delta,2\delta,\dots\}$

I. I. Sharapudinov

Daghestan State Pedagogical University

Abstract: Suppose that $0<\delta\le1$, $N=1/\delta$ and $0\le\alpha$ is an integer. For the classical Meixner polynomials $\mathfrak M_{n,N}^\alpha(x)$ orthonormal on the gird $\{0,\delta,2\delta,\dots\}$ with weight $\rho(x)=(1-e^{-\delta})^\alpha\times\Gamma(Nx+\alpha+1)/\Gamma(Nx+1)$, the following asymptotic formula is obtained:
$$ \mathfrak M_{n,N}^\alpha(z)=\Lambda_n^\alpha(z)+v_{n,N}^\alpha(z). $$
The remainder $v_{n,N}^\alpha(z)$ for $n\le\lambda N$ satisfies the estimate
$$ |v_{n,N}^\alpha(z)|^2\le c(\alpha,\lambda)\delta \sum_{k=0}^n|\Lambda_k^\alpha(z)|^2, $$
where $\Lambda_k^\alpha(x)$ are the Laguerre orthonormal polynomials. As a consequence, a weighted estimate, for the Meixner polynomial $\mathfrak M_{n,N}^\alpha(x)$ on the semiaxis $[0,\infty)$ is obtained.

UDC: 517.587

Received: 28.03.1996
Revised: 15.11.1996

DOI: 10.4213/mzm1642


 English version:
Mathematical Notes, 1997, 62:4, 501–512

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024