Abstract:
Suppose that $0<\delta\le1$, $N=1/\delta$ and $0\le\alpha$ is an integer. For the classical Meixner polynomials $\mathfrak M_{n,N}^\alpha(x)$ orthonormal on the gird $\{0,\delta,2\delta,\dots\}$ with weight $\rho(x)=(1-e^{-\delta})^\alpha\times\Gamma(Nx+\alpha+1)/\Gamma(Nx+1)$, the following asymptotic formula is obtained:
$$
\mathfrak M_{n,N}^\alpha(z)=\Lambda_n^\alpha(z)+v_{n,N}^\alpha(z).
$$
The remainder $v_{n,N}^\alpha(z)$ for $n\le\lambda N$ satisfies the estimate
$$
|v_{n,N}^\alpha(z)|^2\le c(\alpha,\lambda)\delta
\sum_{k=0}^n|\Lambda_k^\alpha(z)|^2,
$$
where $\Lambda_k^\alpha(x)$ are the Laguerre orthonormal polynomials. As a consequence, a weighted estimate, for the Meixner polynomial $\mathfrak M_{n,N}^\alpha(x)$ on the semiaxis $[0,\infty)$ is obtained.