RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1997 Volume 62, Issue 5, Pages 773–781 (Mi mzm1663)

On approximation of the “Membrane” Schrödinger operator by the “Crystal” operator

Yu. P. Chuburin

Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences

Abstract: Let $V(x)$, $x=(s_1,x_2,x_3)$, be a potential periodic in $x_1,x_2$ and exponentially decreasing as $|x_3|\to\infty$, and let $V_N(x)$ be the sum of shifts $V\bigl(x-(0,0,Nn_3)\bigr)$ over all integer $n_3$. We prove that the spectrum and eigenfunctions (not necessarily in the class $L^2$) of the Schrödinger operator with potential $V_N$, considered in a box, approximate the spectrum and eigenfunctions of the operator with potential $V$ and, for the negative part of the spectrum, the approximation converges exponentially in $N\to\infty$.

UDC: 517.984.56

Received: 20.03.1996

DOI: 10.4213/mzm1663


 English version:
Mathematical Notes, 1997, 62:5, 648–654

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025