RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1997 Volume 62, Issue 6, Pages 803–812 (Mi mzm1669)

This article is cited in 1 paper

Obstructions to the extension of partial maps

S. M. Ageeva, S. A. Bogatyib

a A. S. Pushkin Brest State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: One of the most important problems in topology is the minimization (in some sense) of obstructions to extending a partial map $Z\hookleftarrow A\overset{f}{\to} X$, i.e., of a subset $F\subset Z\setminus A$ such that $f$ can be globally extended to its complement. It is shown that if $Z$ is a fixed metric space with $\dim Z\le n$ and $p,q\ge-1$ are fixed numbers, then obstructions to extending all partial maps $Z\hookleftarrow A\overset{f}{\to} X\in\operatorname{LC}^p\cap \operatorname{C}^q$ can be concentrated in preselected fairly thin subsets of $Z$.

UDC: 515.1

Received: 16.02.1995
Revised: 22.08.1997

DOI: 10.4213/mzm1669


 English version:
Mathematical Notes, 1997, 62:6, 675–682

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025