RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1997 Volume 62, Issue 6, Pages 865–870 (Mi mzm1675)

This article is cited in 3 papers

Diagonalization of compact operators on Hilbert modules over $C^*$-algebras of real rank zero

V. M. Manuilov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The classical Hilbert–Schmidt theorem can be extended to compact operators on Hilbert $\mathscr A$-modules over $W^*$-algebras of finite type; i.e., with minor restrictions, compact operators on $\mathscr H_\mathscr A^*$ can be diagonalized over $\mathscr A$. We show that if $B$ is a weakly dense $C^*$-subalgebra of $\mathscr A$ with real rank zero and if some additional condition holds, then the natural extension from $\mathscr H_\mathscr B$ to $\mathscr H_\mathscr A^*\supset\mathscr H_\mathscr B$ of a compact operator can be diagonalized so that the diagonal elements belong to the original $C^*$-algebra $\mathscr B$.

UDC: 517.98

Received: 31.01.1995
Revised: 29.02.1996

DOI: 10.4213/mzm1675


 English version:
Mathematical Notes, 1997, 62:6, 726–730

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024