Abstract:
We consider the boundary value problem
$$
\begin{gathered}
\operatorname{div}(\rho V)=0,\qquad\rho|_{\Gamma_1}=\rho_0,
\\ \rho(V,\nabla V)=\nu\Delta V,\qquad V|_\Gamma=V^0
\end{gathered}
$$
for a vector function $V=(V_1,V_2)$ and a scalar function $\rho\ge0$ in a rectangular domain $\Omega\subset\mathbb R^2$ with boundary $\Gamma$. Here
$$
\Gamma_1=\{x\in\Gamma: (V^0,n)<0\},\qquad
V_1^0|_\Gamma>0,\qquad\nu=\operatorname{const}>0.
$$
We prove that this problem is solvable in Hölder classes.