RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1996 Volume 59, Issue 1, Pages 3–11 (Mi mzm1689)

This article is cited in 4 papers

Spectral properties of operators of the theory of harmonic potential

J. Ahnera, V. V. Dyakinb, V. Ya. Raevskiib, S. Ritterc

a Vanderbilt University
b Institute of Metal Physics, Ural Division of the Russian Academy of Sciences
c Universität Karlsruhe

Abstract: We classify the points of the spectrum of the operators $B$ and $B^*$ of the theory of harmonic potential on a smooth closed surface $S\subset\mathbb R^3$. These operators give the direct value on $S$ of the normal derivative of the simple layer potential and the double layer potential. We show that zero can belong to the point spectrum of both operators in $L_2(S)$. We prove that the half-interval $[-2,2)$ is densely filled by spectrum points of the operators for a varying surface; this is a generalization of the classical result of Plemelj. We obtain a series of new spectral properties of the operators $B$ and $B^*$ on ellipsoidal surfaces.

UDC: 517

Received: 13.12.1994

DOI: 10.4213/mzm1689


 English version:
Mathematical Notes, 1996, 59:1, 3–9

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024