RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1996 Volume 60, Issue 1, Pages 3–10 (Mi mzm1798)

On compact submanifolds of nonpositive external curvature in Riemannian spaces

A. A. Borisenko

V. N. Karazin Kharkiv National University

Abstract: In this paper we consider compact multidimensional surfaces of nonpositive external curvature in a Riemannian space. If the curvature of the underlying space is $\ge1$ and the curvature of the surface is $\le1$, then in small codimension the surface is a totally geodesic submanifold that is locally isometric to the sphere. Under stricter restrictions on the curvature of the underlying space, the submanifold is globally isometric to the unit sphere.

UDC: 517

Received: 19.12.1991
Revised: 28.02.1995

DOI: 10.4213/mzm1798


 English version:
Mathematical Notes, 1996, 60:1, 3–7

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025