RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1996 Volume 60, Issue 1, Pages 30–39 (Mi mzm1801)

This article is cited in 4 papers

Behavior at infinity of solutions of second-order nonlinear equations of a particular class

A. A. Kon'kov

N. E. Bauman Moscow State Technical University

Abstract: Let $\Omega$ be an arbitrary, possibly unbounded, open subset of $\mathbb R^n$, and let $L$ be an elliptic operator of the form
$$ L=\sum_{i,j=1}^n \frac\partial{\partial x_i} \biggl(a_{ij}(x)\frac\partial{\partial x_j}\biggr). $$
The behavior at infinity of the solutions of the equation $Lu=f(|u|)\operatorname{sign}u$ in $\Omega$ is studied, where $f$ is a measurable function. In particular, given certain conditions at infinity, the uniqueness theorem for the solution of the first boundary value problem is proved.

UDC: 517

Received: 15.02.1994

DOI: 10.4213/mzm1801


 English version:
Mathematical Notes, 1996, 60:1, 22–28

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025