RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1996 Volume 60, Issue 2, Pages 185–197 (Mi mzm1818)

This article is cited in 7 papers

Optimal error estimates of a locally one-dimensional method for the multidimensional heat equation

S. B. Zaitseva, A. A. Zlotnik

Moscow Power Engineering Institute (Technical University)

Abstract: For the multidimensional heat equation in a parallelepiped, optimal error estimates in $L_2(Q)$ are derived. The error is of the order of $O(\tau+|h|^2)$ for any right-hand side $f\in L_2(Q)$ and any initial function $u_0\in\mathring W_2^1(\Omega)$; for appropriate classes of less regular $f$ and $u_0$, the error is of the order of $O\bigl((\tau+|h|^2)^\gamma\bigr)$, $1/2\le\gamma<1$.

UDC: 517.9

Received: 16.05.1995

DOI: 10.4213/mzm1818


 English version:
Mathematical Notes, 1996, 60:2, 137–146

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024