This article is cited in
18 papers
Sharp Jackson–Stechkin inequality in $L^2$ for multidimensional spheres
A. G. Babenko Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Abstract:
In this paper we prove the Jackson–Stechkin inequality
$$
E_{n-1}(f)<\omega_r(f,2\tau_{n,\lambda}), \qquad n\ge1, \quad m\ge5, \quad r\ge1,
$$
$f\in L^2(\mathbb S^{m-1})$,
$f\not\equiv\textrm{const}$, which is sharp for each
$n=2,3,\dots$; here
$E_{n-1}(f)$ is the best approximation of a function
$f$ by spherical polynomials of degree
$\le n-1$,
$\omega_r(f,\tau)$ is the
$r$th modulus of continuity of
$f$ based on the translations
$$
s_tf(x)=\frac 1{|\mathbb S^{m-2}|}\int_{\mathbb S^{m-2}}f(x\cos t+\xi\sin t)\,d\xi, \qquad
t\in\mathbb R, \quad x\in\mathbb S^{m-1},
$$
$\mathbb S^{m-2}=\mathbb S^{m-2}_x=\bigl\{\xi\in \mathbb S^{m-1}:x\cdot\xi=0\bigr\}$,
$|\mathbb S^{m-2}|$ is the measure of the unit Euclidean sphere
$\mathbb S^{m-2}$,
$\lambda=(m-2)/2$ and
$\tau_{n,\lambda}$ is the first positive zero of the Gegenbauer cosine polynomial
$C^\lambda_n(\cos t)$ .
UDC:
517.518.837 Received: 04.04.1994
Revised: 18.06.1996
DOI:
10.4213/mzm1834