Abstract:
Let $f\in C[-1,1]$, $-1<\alpha$, $\beta\le0$, $S_n^{\alpha,\beta}(f,x)$ be a partial Fourier–Jacobi sum of order $n$, and let
$$
\begin{aligned}
{\mathscr V}_{m,n}^{\alpha,\beta} & ={\mathscr V}_{m,n}^{\alpha,\beta}(f)
={\mathscr V}_{m,n}^{\alpha,\beta}(f,x)
\& =\frac 1{n+1}\bigl[S_m^{\alpha,\beta}(f,x)+\dots+S_{m+n}^{\alpha,\beta}(f,x)\bigr]
\end{aligned}
$$
be the Vallée Poussin means for Fourier–Jacobi sums. It was proved that if $0<a\le m/n\le b$, then there exists a constant $c=c(\alpha,\beta,a,b)$ such that $\|{\mathscr V}_{m,n}^{\alpha,\beta}\|\le c$, where $\|{V}_{m,n}^{\alpha,\beta}\|$ is the norm of the operator ${\mathscr V}_{m,n}^{\alpha,\beta}$ in $C[-1,1]$.