RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1996 Volume 60, Issue 4, Pages 569–586 (Mi mzm1863)

This article is cited in 2 papers

Convergence of the Vallée–Poussin means for Fourier–Jacobi sums

I. I. Sharapudinov, I. A. Vagabov


Abstract: Let $f\in C[-1,1]$, $-1<\alpha$, $\beta\le0$, $S_n^{\alpha,\beta}(f,x)$ be a partial Fourier–Jacobi sum of order $n$, and let
$$ \begin{aligned} {\mathscr V}_{m,n}^{\alpha,\beta} & ={\mathscr V}_{m,n}^{\alpha,\beta}(f) ={\mathscr V}_{m,n}^{\alpha,\beta}(f,x) \& =\frac 1{n+1}\bigl[S_m^{\alpha,\beta}(f,x)+\dots+S_{m+n}^{\alpha,\beta}(f,x)\bigr] \end{aligned} $$
be the Vallée Poussin means for Fourier–Jacobi sums. It was proved that if $0<a\le m/n\le b$, then there exists a constant $c=c(\alpha,\beta,a,b)$ such that $\|{\mathscr V}_{m,n}^{\alpha,\beta}\|\le c$, where $\|{V}_{m,n}^{\alpha,\beta}\|$ is the norm of the operator ${\mathscr V}_{m,n}^{\alpha,\beta}$ in $C[-1,1]$.

UDC: 517.98

Received: 06.07.1994
Revised: 12.03.1996

DOI: 10.4213/mzm1863


 English version:
Mathematical Notes, 1996, 60:4, 425–437

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024