RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2003 Volume 73, Issue 2, Pages 179–194 (Mi mzm188)

This article is cited in 1 paper

Joint Approximations of Distributions in Banach Spaces

A. M. Voroncov

M. V. Lomonosov Moscow State University

Abstract: For a given homogeneous elliptic partial differential operator $L$ with constant complex coefficients, two Banach spaces $V_1$ and $V_2$ of distributions in $\mathbb R^N$, and compact sets $X_1$ and $X_2$ in $\mathbb R^N$, we study joint approximations in the norms of the spaces $V_1(X_1)$ and $V_2(X_2)$ (the spaces of Whitney jet-distributions) by the solutions of the equation $L_u=0$ in neighborhoods of the set $X_1\cup X_2$. We obtain a localization theorem, which, under certain conditions, allows one to reduce the above-cited approximation problem to the corresponding separate problems in each of the spaces.

UDC: 517.988

Received: 09.04.2002

DOI: 10.4213/mzm188


 English version:
Mathematical Notes, 2003, 73:2, 168–182

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024