RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2003 Volume 73, Issue 3, Pages 348–354 (Mi mzm191)

This article is cited in 14 papers

The Subspace of $C[0,1]$ Consisting of Functions Having Finite One-Sided Derivatives Nowhere

E. I. Berezhnoi

P. G. Demidov Yaroslavl State University

Abstract: We construct a closed infinite-dimensional subspace $G\subset C[0,1]$giving an affirmative answer to the old question: Does there exist an infinite-dimensional closed subspace $G\subset C[0,1]$ such that each (not identically zero) function $y\in G$ has neither a right-hand nor a left-hand finite derivative at any point.

UDC: 513.88

Received: 15.12.2000
Revised: 14.12.2001

DOI: 10.4213/mzm191


 English version:
Mathematical Notes, 2003, 73:3, 321–327

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025