RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1995 Volume 58, Issue 4, Pages 582–595 (Mi mzm2078)

This article is cited in 1 paper

A construction of complete minimal, but not uniformly minimal, exponential systems with real separable spectrum in $L^p$ and $C$

A. M. Sedletskii

Moscow Power Engineering Institute (Technical University)

Abstract: We construct real separable sequences $\{\lambda_n\}$ such that the corresponding systems of exponentials $\exp(i\lambda_nt)$ are complete and minimal, but not uniformly minimal, in the spaces $L^1(-\pi,\pi)$, $L^p(-\pi,\pi)$, $1\le p<\infty$, $C[-\pi,\pi]$.

Received: 15.03.1994


 English version:
Mathematical Notes, 1995, 58:4, 1084–1093

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024