RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1995 Volume 58, Issue 5, Pages 723–735 (Mi mzm2091)

This article is cited in 6 papers

Recurrence of the integral of a smooth three-frequency conditionally periodic function

N. G. Moshchevitin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We prove V. V. Kozlov's famous conjecture claiming that the integral of an analytic three-frequency conditionally periodic function with zero mean and incommensurable frequencies recurs. For a conditionally periodic function of class $C^2$ on $\mathbb T^n$, $n=2,3$, we prove that the integral recurs uniformly with respect to the initial data.

Received: 01.06.1995


 English version:
Mathematical Notes, 1995, 58:5, 1187–1196

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025