RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1995 Volume 58, Issue 6, Pages 818–827 (Mi mzm2101)

On a theorem of Helly

N. A. Bobylev

Institute of Control Sciences, Russian Academy of Sciences

Abstract: We consider a group of problems related to the well-known Helly theorem on the intersections of convex bodies. We introduce convex subsets $K(f)$ of a compact convex set $K$ defined by the relation
$$ K(f)=\operatorname{co}\biggl\{\frac N{N+1}x+\frac 1{N+1}f(x)\biggr\} \quad(x\in K\subset\mathbb R^N), $$
where $f\colon K\to K$ are continuous mappings, and prove that the intersection $\bigcap_{f\in F}K(f)$ is not empty; here $F$ is the set of all continuous mappings $f\colon K\to K$.

Received: 20.02.1995


 English version:
Mathematical Notes, 1995, 58:6, 1262–1268

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025