RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2005 Volume 77, Issue 1, Pages 117–120 (Mi mzm2474)

This article is cited in 6 papers

A short proof of the twelve-point theorem

D. Repovša, M. B. Skopenkovb, M. Cencelja

a University of Ljubljana
b M. V. Lomonosov Moscow State University

Abstract: We present a short elementary proof of the following twelve-point theorem. Let $M$ be a convex polygon with vertices at lattice points, containing a single lattice point in its interior. Denote by $m$ (respectively, $m^*$) the number of lattice points in the boundary of $M$ (respectively, in the boundary of the dual polygon). Then $m+m^*=12$.

UDC: 514

Received: 29.06.2004

DOI: 10.4213/mzm2474


 English version:
Mathematical Notes, 2005, 77:1, 108–111

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024