RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2005 Volume 77, Issue 2, Pages 273–290 (Mi mzm2489)

This article is cited in 19 papers

Uniqueness criterion in an inverse problem for an abstract differential equation with nonstationary inhomogeneous term

I. V. Tikhonova, Yu. S. Èidel'manb

a Moscow Engineering Physics Institute (State University)
b Tel Aviv University

Abstract: In a Banach space $E$, we consider the inverse problem $du(t)/dt=Au(t)+\phi(t)p$, $u(0)=u_0$, $u(T)=u_1$, with an unknown function $u(t)$ and an element $p\in E$. The operator $A$ is assumed linear and closed. In this paper, we establish minimal constraints on the function $\phi\in C([0,T])$ for which the uniqueness of the solution of the inverse problem is completely described in terms of the eigenvalues of the operator $A$.

UDC: 517.95

Received: 19.09.2002

DOI: 10.4213/mzm2489


 English version:
Mathematical Notes, 2005, 77:2, 246–262

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025